Part Number Hot Search : 
STUD438S 100ES UPF1N50 A58005 1N4800D C3506 ICS8530 70N1T
Product Description
Full Text Search
 

To Download IL211AT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IL211AT/IL212AT/IL213AT
FEATURES
N EW
* High Current Transfer Ratio
IL211AT--20% Minimum IL212AT--50% Minimum IL213AT--100% Minimum Isolation Voltage, 2500 VACRMS Electrical Specifications Similar to Standard 6 Pin Coupler Industry Standard SOIC-8 Surface Mountable Package Standard Lead Spacing, .05" Available in Tape and Reel (suffix T) (Conforms to EIA Standard RS481A) Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering Underwriters Lab File #E52744 (Code Letter P)
PHOTOTRANSISTOR SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
* * * * * * *
.120.005 (3.05.13) .240 (6.10) Pin One ID .192.005 (4.88.13) .004 (.10) .008 (.20)
Anode .154.005 Cathode C L (3.91.13) NC NC .016 (.41) .015.002 (.38.05) .008 (.20) .050 (1.27) typ. .021 (.53)
1 2 3 4
8 7 6 5
NC Base Collector Emitter
40
7 .058.005 (1.49.13) .125.005 (3.18.13) Lead Coplanarity .0015 (.04) max.
5 max. R.010 (.25) max.
.020.004 (.15.10) 2 plcs.
TOLERANCE: .005 (unless otherwise noted)
Characteristics (TA=25C)
DESCRIPTION
The IL211AT/212AT/213AT are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL211AT//212AT/ 213AT comes in a standard SOIC-8 small outline package for surface mounting which makes it ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices. A choice of 20, 50, and 100% minimum CTR at IF=10 mA makes these optocouplers suitable for a variety of different applications. Maximum Ratings Emitter Peak Reverse Voltage ....................................... 6.0 V Continuous Forward Current .......................... 60 mA Power Dissipation at 25C ............................. 90 mW Derate Linearly from 25C ....................... 1.2 mW/C Detector Collector-Emitter Breakdown Voltage ................ 30 V Emitter-Collector Breakdown Voltage .................. 7 V Collector-Base Breakdown Voltage ................... 70 V Power Dissipation ........................................ 150 mW Derate Linearly from 25C ....................... 2.0 mW/C Package Total Package Dissipation at 25C Ambient (LED + Detector) ...................................... 280 mW Derate Linearly from 25C ....................... 3.3 mW/C Storage Temperature ..................... -55C to +150C Operating Temperature ................. -55C to +100C Soldering Time at 260C ............................... 10 sec. Semiconductor Group
Emitter Forward Voltage Reverse Current Capacitance Detector Breakdown Voltage
Symbol Min. Typ. VF IR CO BVCEO BVECO 1.3 0.1 25 30 7 5 10
Max. Unit 1.5 100 V A pF V V 50 nA pF %
Condition IF=10 mA VR=6.0 V VR=0 IC=10 A IE=10 A VCE=10 V, I F =0 VCE=0 IF=10 mA VCE=5 V
Collector-Emitter Dark Current I CEOdark Collector-Emitter Capacitance CCE Package DC Current Transfer CTRDC
IL211AT 20 50 IL212AT 50 80 IL213AT 100 130 Collector-Emitter Saturation Voltage VCE sat Isolation Test Voltage Capacitance, Input to Output Resistance, Input to Output Switching Time
0.4
IF=10 mA, IC=2.0 mA VACRMS
V IO C IO
2500 0.5 100 3.0
pF G s
R IO tON, tOFF
IC=2 mA, RE=100 , VCE=10 V
Specifications subject to change.
4-4
10.95
Figure 1. Forward voltage versus forward current
1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 Ta = 85C Ta = 25C Ta = -55C
NCTRce - Normalized CTRce
VF - Forward Voltage - V
Figure 2. Normalized non-saturated and saturated CTRce versus LED current 1.5 Normalized to: Vce = 10 V Vce = 5 V IF = 10 mA 1.0 Ta = 25C
0.5
Vce = 0.4 V 0.0 .1 1 10 IF - LED Current - mA 100
Figure 3. Collector-emitter current versus LED current
Figure 4. Normalized collector-base photocurrent versus LED current
150
Vce = 10 V
100
NIcb - Normalized Icb
Ta = 25C
100
Ice - Collector-emitter Current - mA
10
Normalized to: Vcb = 9.3 V IF = 1 mA Ta = 25 C
50 Vce = 0.4 V 0 .1 1 10 IF - LED Current - mA 100
1
.1 .1 1 10 IF - LED Current - mA 100
Figure 5. Normalized collector-base photocurrent versus LED current
10
NIcb - Normalized Icb
Icb - Collector-base Current - A
1
Normalized to: Vcb = 9.3 V IF = 10 mA Ta = 25 C
Figure 6. Collector-base photocurrent versus LED current 1000 Ta = 25C
100 10 1 .1
Vcb = 9.3 V
.1
.01 .1
1 10 IF - LED Current - mA
100
.1
1
10
100
IF - LED Current - mA
Figure 8. Normalized saturated HFE versus base current and temperature
Figure 7. Collector-emitter leakage current versus temperature
Iceo - Collector-Emitter - nA
NHFE(sat) - Normalized Saturated HFE
5 10 4 10 3 10 10 2 10 1 Vce = 10V TYPICAL
2.0 1.5 1.0 25C
70C 50C
Normalized to: Ib = 20A Vce = 10 V Ta = 25 C
10 0 10 -1 10 -2 -20
Vce = 0.4 V 0.5 0.0 1 10 100 Ib - Base Current - A 1000
0 20 40 60 80 100 Ta - Ambient Temperature - C
Semiconductor Group
4-5
Figure 9. Typical switching characteristics versus base resistance (saturated operation) 100
Figure 10. Typical switching times versus load resistance
Switching time (S)
Switching time (s)
Input: IF =10mA 50 Pulse width=100 mS Duty cycle=50%
1000
T OF
F
Input: 500 IF=10 mA Pulse width=100 mS Duty cycle=50% 100 50 10 5 1
TO
FF
10 5
TON
TON
1.0 10K 50K 100K 500K 1M
0.1
0.5 1
5
10
50 100
Base-emitter resistance, RBE ()
Load resistance RL (K)
Semiconductor Group
4-6


▲Up To Search▲   

 
Price & Availability of IL211AT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X